Abstract

This paper addresses the H∞ hybrid anti-bump control for switched nonlinear systems with event-triggering via the interval type-2 (IT2) fuzzy model. A unified framework of anti-bump performance for switched nonlinear systems called hybrid anti-bump performance is established to attenuate sudden big hybrid bumps caused by both triggering and switching. Then, we design a sampled-data-based switching strategy, under which we only need to check the switching conditions at discrete sampling instants. By using the multiple Lyapunov–Krasovskii functional theory and the constructed switching law, sufficient conditions are made for the considered systems to be asymptotically stable with both H∞ performance and hybrid anti-bump performance. Moreover, the switching law, the event-triggered scheme, and the event-triggered controllers are jointly designed. Finally, an electro-hydraulic model is exploited to verify the applicability and effectiveness of our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call