Abstract
Many real-life optimization problems often face an increased rank of nonsmoothness (many local minima) which could prevent a search algorithm from moving toward the global solution. Evolution-based algorithms try to deal with this issue. The algorithm proposed in this paper is called GAAPI and is a hybridization between two optimization techniques: a special class of ant colony optimization for continuous domains entitled API and a genetic algorithm (GA). The algorithm adopts the downhill behavior of API (a key characteristic of optimization algorithms) and the good spreading in the solution space of the GA. A probabilistic approach and an empirical comparison study are presented to prove the convergence of the proposed method in solving different classes of complex global continuous optimization problems. Numerical results are reported and compared to the existing results in the literature to validate the feasibility and the effectiveness of the proposed method. The proposed algorithm is shown to be effective and efficient for most of the test functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.