Abstract
Covalent association of LTBP-1 (latent TGF-beta binding protein-1) to latent TGF-beta is mediated by the third eight-cysteine (also referred to as TB) module of LTBP-1, a domain designated as CR3. Spodoptera frugiperda (Sf9) cells have proved a suitable cell system in which to study this association and to produce recombinant CR3, and we show here that another lepidopteran cell line, Trichoplusia niTN-5B1-4 (High-Five) cells, allows the recovery of large amounts of functional recombinant CR3. CR3 contains an N-glycosylation site, which is conserved in all forms of LTBP known to date. When we examined the status of this N-glycosylation using MALDI-TOF mass spectrometry and enzymatic analysis, we found that CR3 is one of the rare recombinant peptides modified with complex glycans in insect cells. Sf9 cells mainly processed the fucosylated paucomannosidic structure (GlcNAc)(2)(Mannose)(3)Fucose, although hybrid and complex N-glycosylations were also detected. In High-Five cells, the peptide was found to be modified with a wide variety of hybrid and complex sugars in addition to paucomanosidic oligosaccharides. Most glycans had one or two fucose residues bound through alpha1,3 and alpha1,6 linkages to the innermost GlcNAc. On the basis of these results and on the structure of an eight-cysteine domain from fibrillin-1, we present a model of glycosylated CR3 and discuss the role of glycosylation in eight-cysteine domain protein-protein interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.