Abstract

The hybrid adhesive bonded and riveted joints have wider and wider application in different branches of engineering: aerospace, mechanical, civil etc. The hybrid joints’ strength is 1.5 to 3 times higher than only adhesive bonded joints’ strength. The hybrid joints characterize higher reliability during long-term working. In this article we present the influence of rivets’ lay-out geometry on the hybrid adhesive bonded/riveted joints response to mechanical loading. Experimental research was carried using 3-D digital image correlation system ARAMIS. This system enables monitoring of the deformation processes of the hybrid joint specimen up to failure. We analysed the state of deformation of the adhesive bonded double-lap joints reinforced by different numbers of rivets. The hybrid joint specimens were subjected to the uniaxial tensile test. Moreover, the influence of geometry of individual number of rivets’ layout (rivets arranged in one or more rows) for hybrid joint strength was studied. Experimental research was completed and supported by the computer simulations of the whole deformation processes of metal layers (aluminum), adhesive layers and rivets. Numerical simulations were conducted with the ABAQUS programme. The analysis of stress concentrations in different parts of the hybrid joint and their behaviour up to failure were investigated. Finally, the analysis and the comparison of the obtained results confirmed the influence of rivets’ lay-out geometry not only on rivets joints but also on the hybrid adhesive bonded/riveted joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call