Abstract

This paper presents a new digitally driven manufacturing process chain for the production of high performance, three-dimensional RF devices. This is achieved by combining Fused Filament Fabrication of polyetherimide based polymer with selective light-based synthesis of silver nanoparticles and electrochemical deposition of copper. The resultant manufacturing method produces devices with excellent DC electrical resistivity (6.68 μΩ cm) and dielectric properties (relative permittivity of 2.67 and loss tangent of 0.001). Chemically modifying and patterning the substrate to produce the metallization overcomes many of the limitations of direct write deposition methods resulting in improved performance, adhesion and resolution of the antenna pattern. The fabricated demonstrators cover a broadband range of 0.1 GHz – 10 GHz and the measured results show a direct agreement with the simulated design over a wide frequency band. Overall the materials used as a substrate have a low relative permittivity and lower dielectric loss than FR-4, thereby making them well suited for antenna applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.