Abstract
SUMMARY To improve the transient response of an electric power transmission system, a hybrid adaptive robust control method is proposed in this paper for the static var compensator by incorporating the immersion and invariance adaptive (I&I adaptive) and L2-gain control. In contrast to the standard I&I adaptive control algorithm, establishing a target system is not required in constructing the robust control law with the proposed method. Thus, the procedure of solving PDEs to satisfy the immersion condition can be avoided. In addition, both parametric and non-parametric uncertainties, which commonly exist in electric power transmission systems, are considered. The parametric uncertainty induced by the damping coefficient of the system is estimated by the designed adaptive law, which is constructed by ensuring the estimation error converges to zero. The non-parametric uncertainty is caused by external disturbances and approximation errors in modeling the uncertain structure. By assuming that the L2-gain of the system to the non-parametric uncertainties satisfies a dissipation inequality, we found that the robustness of the controller can be guaranteed. It is proved that all the system states are globally bounded and converge to a new stable equilibrium. Simulation results are also presented to show the effectiveness of the proposed control method in improving the transient response of the system and the convergence speed of the system states. Copyright © 2013 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.