Abstract

The space environments and special mission demands require large-scale and high shape accuracy cable net structures. The vibration control is an essential issue for shape control and performance conservation of large flexible cable net structures. This paper investigates the hybrid active wave/mode control of space prestressed taut cable net structures. First, the traveling wave dynamic model of cable net structures is explored by elemental waveguide and propagation equations of cables together with force balance conditions and compatibility conditions of joints. Then, the active wave control model is established by using the assumption forms of wave controllers to adjust the mechanical boundaries of the controlled joints. Finally, the hybrid active wave/mode control model is proposed by constructing the mapping relationship between wave control force, modal damping and natural frequencies. The proposed control method is verified by a planar cable net structure and the results show that the hybrid active wave/mode control can give a better broadband vibration attenuation performance for space prestressed taut cable net structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.