Abstract

In this paper, a dynamic (i.e., multi-year) hybrid model is presented for Transmission Expansion Planning (TEP) utilizing the High Voltage Alternating Current (HVAC) and multi terminal Voltage Sourced Converter (VSC)-based High Voltage Direct Current (HVDC) alternatives. In addition to new HVAC and HVDC lines, the possibility of converting existing HVAC transmission lines to HVDC lines is considered in the proposed model. High shares of renewable resources are integrated into the proposed hybrid AC/DC TEP model. Due to the intermittency of renewable resources, the planning of large-scale Energy Storage (ES) devices is considered. In order to accurately estimate the total TEP costs and hence capturing the scenarios of load and renewable generation uncertainty, using a clustering approach, each year of the planning horizon is replaced with four representative days. The proposed model is formulated as a Mixed-Integer Linear Programming (MILP) problem. Using Benders Decomposition (BD) algorithm, the proposed model is decomposed into a Master investment problem to handle the decision variables, and Sub-problems to check the feasibility of master problem solution and optimize the operation and ES investment cost. Three test systems are used as case studies to demonstrate the effectiveness of the proposed hybrid AC/DC TEP model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.