Abstract
Integrated optical chips have already been established for application in optical communication. They also offer interesting future perspectives for integrated quantum optics on a chip. At present, however, they are mostly fabricated using essentially planar fabrication approaches like electron-beam lithography or UV optical lithography. Many further design options would arise if one had complete fabrication freedom in regard to the third dimension normal to the chip without having to give up the virtues and the know-how of existing planar fabrication technologies. As a step in this direction, we here use three-dimensional dip-in direct-laser-writing optical lithography to fabricate three-dimensional polymeric functional devices on pre-fabricated planar optical chips containing Si3N4 waveguides as well as grating couplers made by standard electron-beam lithography. The first example is a polymeric dielectric rectangular-shaped waveguide which is connected to Si3N4 waveguides and that is adiabatically twisted along its axis to achieve geometrical rotation of linear polarization on the chip. The rotator’s broadband performance at around 1550 nm wavelength is verified by polarization-dependent grating couplers. Such polarization rotation on the optical chip cannot easily be achieved by other means. The second example is a whispering-gallery-mode optical resonator connected to Si3N4 waveguides on the chip via polymeric waveguides. By mechanically connecting the latter to the disk, we can control the coupling to the resonator and, at the same time, guarantee mechanical stability of the three-dimensional architecture on the chip. Direct laser writing is a popular scheme for constructing three-dimensional integrated optical structures. Martin Schumann and co-workers from the Karlsruhe Institute of Technology and the Institute of Nanotechnology in Germany used two-photon polymerization to create three-dimensional polymer objects such as bridge waveguides, a twisted-waveguide polarization rotator and free-standing disk resonators. The structures, which would be difficult or impossible to construct using planar lithography, were successfully integrated with silicon optical chips featuring silicon nitride waveguides that guide light in the 1,550 nm telecommunications wavelength window. The researchers say that their approach could also be used to provide convenient access to three-dimensional photonic crystals. An advanced form of this approach that exploits higher resolutions would allow the construction of structures that are compatible with visible wavelengths.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.