Abstract

AbstractThis paper investigates the effectiveness of the Genetic Algorithm (GA) and Simulated Annealing algorithm (SA) training artificial neural network weights and biases for rainfall forecasting, namely GAS–ANN. Firstly, a hybrid GA and SA method is used to train the begining connection weights and thresholds of ANN. Secondly, the back propagation algorithm is used to search around the global optimum. Finally, a numerical example of monthly rainfall data in a catchment located in a subtropical monsoon climate in Linzhou of China, is used to elucidate the forecasting performance of the proposed GASA–ANN model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the autoregressive integrated moving average (ARIMA), back–propagation neural network (BP–NN) and pure Genetic Algorithm training Artificial Neural Network model (GA–ANN). Therefore, the GASA–ANN model is a promising alternative for rainfall forecasting.KeywordsRainfall ForecastingArtificial Neural NetworkGenetic AlgorithmSimulated Annealing

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.