Abstract

Technologies that permit rapid investigation of DNA sequences, such as those containing single nucleotide polymorphisms (SNPs), are of great consequence to many sectors that perform molecular diagnostic analyses. We have developed a novel fluorescent oligonucleotide probe technology, termed HyBeaconsTM, which provides a new homogeneous method for fluorescence-based sequence detection, allele discrimination and DNA quantification. Hybridization of HyBeacons to complementary DNA target sequences results in a measurable elevation of probe fluorescence emission. HyBeacon probes may be incorporated into real-time polymerase chain reaction (PCR) assays to detect the presence and monitor the accumulation of specific DNA sequences. Furthermore, closely related sequences differing by as little as a single nucleotide may be discriminated by measuring the melting temperatures (Tm) of various probe/target duplexes and exploiting the differences in Tm that exist between different duplexes. We demonstrate here that HyBeacon probes are efficient tools for rapid sequence analysis and that a single probe may be employed to reliably identify homozygous and heterozygous samples. Additional benefits exhibited by the HyBeacon technology derive from their simple mode of action, ease of design, relatively inexpensive synthesis and potential for multiplex analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call