Abstract

Tumor-targeted drug delivery via chemotherapy is very effective on cancer treatment. For potential anticancer agent such as Camptothecin (CPT), high chemotherapeutic efficacy and accurate tumor targeting are equally crucial. Inspired by special CD44 binding capability from hyaluronic acid (HA), in this study, novel HA-coated CPT nanocrystals were successfully prepared by an antisolvent precipitation method for tumor-targeted delivery of hydrophobic drug CPT. These HA-coated CPT nanocrystals demonstrated high drug loading efficiency, improved aqueous dispersion, prolonged circulation, and enhanced stability resulting from their nanoscaled sizes and hydrophilic HA layer. Moreover, as compared to crude CPT and naked CPT nanocrystals, HA-coated CPT nanocrystals displayed dramatically enhanced in vitro anticancer activity, apoptosis-inducing potency against CD44 overexpressed cancer cells, and lower toxic effect toward normal cells due to pH-responsive drug release behavior and specific HA-CD44 mediated endocytosis. Additionally, HA-coated CPT nanocrystals performed fairly better antimigration activity and biocompatibility. The possible molecular mechanism regarding this novel drug formulation might be linked to intrinsic mitochondria-mediated apoptosis by an increase of Bax to Bcl-2 ratio and upregulation of P53. Consequently, HA-coated CPT nanocrystals are expected to be an effective nanoplatform in drug delivery for cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call