Abstract

Frequent removal and reapplication of wound dressings can cause mechanical disruption to the healing process and significant physical discomfort for patients. In response to this challenge, a dynamic covalent hydrogel has been developed to advance wound care strategies. This system comprises aldehyde functionalized chondroitin sulfate (CS-CHO) and thiolated hyaluronic acid (HA-SH), with the distinct ability to form in situ via thiol-aldehyde addition and dissolve on-demand via the thiol-hemithioacetal exchange reaction. Although rarely reported, the dynamic covalent reaction of thiol-aldehyde addition holds great promise for the preparation of dynamic hydrogels due to its rapid reaction kinetics and easy reversible dissociation. The thiol-aldehyde addition chemistry provides the hydrogel system with highly desirable characteristics of rapid gelation (within seconds), self-healing, and on-demand dissolution (within 30 min). The mechanical and dissolution properties of the hydrogel can be easily tuned by utilizing CS-CHO materials of different aldehyde functional group contents. The chemical structure, rheology, self-healing, swelling profile, degradation rate, and cell biocompatibility of the hydrogels are characterized. The hydrogel possesses excellent biocompatibility and proves to be significant in promoting cell proliferation in vitro when compared to a commercial hydrogel (HyStem® Cell Culture Scaffold Kit). This study introduces the simple fabrication of a new dynamic hydrogel system that can serve as an ideal platform for biomedical applications, particularly in wound care treatments as an on-demand dissolvable wound dressing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.