Abstract

Deep cutaneous fungal infection (DCFI) is difficult to be treated by the traditional topical application due to low drug transdermal efficiency, poor fungicidal effect, and easy to develop drug resistance. Here, we report a novel biodegradable microneedle patch (CuS/PAF-26 MN) for DCFI treatment. CuS/PAF-26 MN is composed of hyaluronic acid (HA) and sodium carboxymethylcellulose (CMC-Na), which can simultaneously deliver copper sulfide nanoenzyme (CuS NE) and antimicrobial peptide (PAF-26). CuS NE catalyzes hydrogen peroxide to produce reactive oxygen species (ROS), and PAF-26 directly destroys the cell membrane of fungi. The combination of ROS toxicity produced by CuS NE and the destruction of fungal membrane by PAF-26 shows strong antifungal activities without drug resistance. The antifungal effect of CuS/PAF-26 MN is significantly superior to that of traditional ointment, CuS MN or PAF-26 MN in a DCFI mouse model. Therefore, CuS/PAF-26 MN shows a promising application prospect for treating DCFI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.