Abstract

Due to the limited supply of vessels and nerves, acute or chronic tendon injuries often result in significant and persistent complications, such as pain and sprains, as well as the loss of joint functions. Among these complications, tendon adhesions within the surrounding soft tissue have been shown to significantly impair the range of motion. In this study, to elucidate the effects of a hyaluronic acid (HA) injection at the site of tenorrhaphy on tendon adhesion formation, we used a full transection model of a rat’s Achilles tendon to investigate the anti-adhesive function of HA. Our initial findings showed that significantly lower adhesion scores were observed in the HA-treated experimental group than in the normal saline-treated control group, as determined by macroscopic and histological evaluations. Hematoxylin and eosin, as well as picrosirius red staining, showed denser and irregular collagen fibers, with the larger number of infiltrating inflammatory cells in the control group indicating severe adhesion formation. Furthermore, we observed that the expression of tendon adhesion markers in operated tendon tissue, such as collagen type I, transforming growth factor-β1, and plasminogen activator inhibitor-1, was suppressed at both the gene and protein levels following HA treatment. These results suggest that HA injections could reduce tendon adhesion formation by significantly ameliorating inflammatory-associated reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.