Abstract
The main aim of this study is to investigate the therapeutic efficacy of direct intra-articular injection of bone-marrow-derived stem/stromal cells (BMSCs) and the adjuvant role of hyaluronic acid (HA) in facilitating rabbit articular cartilage repair. First, rabbit BMSCs were treated with a medium containing different concentrations of HA. Later, HA’s influence on BMSCs’ CD44 expression, cell viability, extracellular glycosaminoglycan (GAG) synthesis, and chondrogenic gene expression was evaluated during seven-day cultivation. For the in vivo experiment, 24 rabbits were used for animal experiments and 6 rabbits were randomly allocated to each group. Briefly, chondral defects were created at the medial femoral condyle; group 1 was left untreated, group 2 was injected with HA, group 3 was transplanted with 3 × 106 BMSCs, and group 4 was transplanted with 3 × 106 BMSCs suspended in HA. Twelve weeks post-treatment, the repair outcome in each group was assessed and compared both macroscopically and microscopically. Results showed that HA treatment can promote cellular CD44 expression. However, the proliferation rate of BMSCs was downregulated when treated with 1 mg/mL (3.26 ± 0.03, p = 0.0002) and 2 mg/mL (2.61 ± 0.04, p = 0.0001) of HA compared to the control group (3.49 ± 0.05). In contrast, 2 mg/mL (2.86 ± 0.3) of HA treatment successfully promoted normalized GAG expression compared to the control group (1.88 ± 0.06) (p = 0.0009). The type II collagen gene expression of cultured BMSCs was significantly higher in BMSCs treated with 2 mg/mL of HA (p = 0.0077). In the in vivo experiment, chondral defects treated with combined BMSC and HA injection demonstrated better healing outcomes than BMSC or HA treatment alone in terms of gross grading and histological scores. In conclusion, this study helps delineate the role of HA as a chondrogenic adjuvant in augmenting the effectiveness of stem-cell-based injection therapy for in vivo cartilage repair. From a translational perspective, the combination of HA and BMSCs is a convenient, ready-to-use, and effective formulation that can improve the therapeutic efficacy of stem-cell-based therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.