Abstract

Lung cancer seriously threatens the health of human beings, with non-small cell lung cancer (NSCLC) accounting for 80%. Nowadays, the potential position of nano-delivery in treating cancer has been the subject of continuous research. The present research aimed to prepare two molecular weight hyaluronic acid (HA)-modified kaempferol (KA)-loaded nanostructured lipid carriers (HA-KA-NLCs) by the method of melting ultrasonic and electrostatic adsorption, and to assess the antitumor effect of the preparations on A549 cells. The characterization and safety evaluation of the preparations illustrated that they are acceptable for drug delivery for cancer. Subsequently, differential scanning calorimetry (DSC) curve and transmission electron microscopy (TEM) images indicated that the drug was adequately incorporated in the carrier, and the particle appeared as a sphere. Moreover, HA-KA-NLC showed predominant in vitro antitumor effects, inhibiting proliferation, migration, and invasion, promoting apoptosis and increasing cellular uptake of A549 cells. Otherwise, the Western blot assay revealed that preparations could activate epithelial-mesenchymal transition (EMT)-related signaling pathways and modulate the expression of E-cadherin, N-cadherin, and Vimentin in A549 cells. Our present findings demonstrated that HA-KA-NLC could be considered as a secure and effective carrier for targeted tumor delivery and may have potential application prospects in future clinic therapy of NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call