Abstract

Immunofluorescence for hyaluronic acid occurred intracellularly in morphologically highly specialized areas in the adult human inner ear, for instance in the cuticular plates of all types of hair cells, at the apposition between outer hair cells and Deiter's cell bodies and in the near-surface area of Hensen's cells. The cytoskeletal organization in these regions is characterized by tightly packed filamentous proteins. Under physiological stimulus these regions undergo micromechanical change, either actively moving (force generation) or passively vibrating with changes in elasticity. Hyaluronic acid might therefore act as a friction-reducing molecular lubricant. In the lateral wall of the cochlea an accumulation of hyaluronic acid occurred in the loose connective tissue of the spiral ligament, in particular close to the stria vascularis. Due to its complex molecular network, hyaluronic acid offers considerable resistance to bulk flow of water and may exclude molecules. The basal cell region of the stria vascularis is thus given additional support to minimize (seal?) the stria vascularis towards all other areas except the endolymphatic space. Here, hyaluronic acid could act as a molecular filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call