Abstract

Hyaluronic acid is a main extracellular matrix component in the central nervous system (CNS), which provides structural support under physical and physiological conditions to maintain cellular homeostasis. However, hyaluronic acid and its degradation products are present within focal demyelinating lesions in multiple sclerosis (MS) patients and autoimmune encephalomyelitis (EAE) mouse models. Differentiated plasma membranes called myelin membranes are generated by oligodendrocytes (also called oligodendroglial cells), which are glial cells that wrap neuronal axons in the CNS. Despite these positive or negative relationships of hyaluronic acid with oligodendroglial cell differentiation and/or myelination, it remains unclear whether and how hyaluronic acid affects oligodendroglial cells. Here, we showed that hyaluronic acid and the cognate receptor CD44 are directly involved in inhibiting morphological differentiation in FBD-102b cells, which are differentiation models of oligodendroglial precursor cells, and primary oligodendroglial precursor cells. Their phenotype changes were supported by decreased oligodendroglial cell differentiation, myelin marker protein expression levels, and Akt kinase phosphorylation levels as a marker kinase. Furthermore, the effects of hyaluronic acid required transmembrane protein 2 (TMEM2), a cell surface hyaluronidase. These results suggest that hyaluronic acid and the CD44 receptor, acting through TMEM2, contribute to inhibiting morphological differentiation of oligodendroglial cells, providing a mechanism underlying cell physiological and possible pathological effects responsible for hyaluronic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call