Abstract
Tissue engineering typically requires a use of scaffolds when delivering tissue-specific cells to be engineered. Hydrogels are frequently used as scaffolds, because their composition, structure, and function resemble the natural tissue extracellular matrix. In this study, hyaluronate-alginate hybrid (HAH) was synthesized by conjugating alginate (ALG) with the hyaluronate (HA) backbone using various types of linkers. HAH hydrogel was prepared by physically cross-linking the HAH polymer in the presence of calcium ions without chemical cross-linkers. The mechanical stiffness of HAH hydrogel was significantly affected by changing the type of a linker between HA and ALG. The mechanical stiffness increased with increasing linker length, likely due to enhanced intermolecular reactions between HA and ALG. This enables controlling the mechanical properties of HAH hydrogels. The types of linkers used to synthesize HAHs also influenced the chondrogenic differentiation of ATDC5 cells cultured in HAH hydrogel in vitro. This hybrid system that can change the mechanical stiffness by varying the linker type while maintaining the cross-linking density may be useful to design and fabricate scaffolds for tissue engineering applications, including cartilage regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.