Abstract

The purpose of this study was to develop a safe and efficacious drug delivery platform for sustained release of cisplatin after locoregional administration. We successfully synthesized hyaluronan-cisplatin nanoconjugates (HA-Lys-Pt) using an N-Ac-lysine linker, which formed a thermodynamically stable five-membered ring with the platinum. The conjugate was characterized for release kinetics, in vitro anti-proliferative activity, degradability, impurity content, formation of Pt-DNA adducts, pharmacokinetics, tolerability in rodents and canines, and for efficacy in rodents. The 75 kD HA-Lys-Pt (75HA-Lys-Pt) sustained release of platinum with a 69 h half-life in phosphate buffered saline without substantial burst release. Compared to intravenous cisplatin, subcutaneously injected 75HA-Lys-Pt formed 3.2-fold more Pt-DNA adducts in rat peripheral blood mononuclear cells compared to intravenous cisplatin over 96 h. Subcutaneous 75HA-Lys-Pt was tolerable in rats at 40 mg/kg (4 × LD50 of conventional cisplatin) and resulted in 62.5% partial response and 37.5% stable disease in murine xenografts of head and neck squamous cell cancer (20 mg/kg/wk × 3 weeks). 75HA-Lys-Pt demonstrated extended tmax and improved area-under-the-curve compared to cisplatin in rats and canines. Canine safety was demonstrated by liver enzyme and electrolyte levels, complete blood count, and urinalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call