Abstract
Hyaluronan synthases (HASs) are plasma membrane enzymes that simultaneously elongate, bind, and extrude the growing hyaluronan chain directly into extracellular space. In cells transfected with green fluorescent protein (GFP)-tagged Has3, the dorsal surface was decorated by up to 150 slender, 3-20-microm-long microvillus-type plasma membrane protrusions, which also contained filamentous actin, the hyaluronan receptor CD44, and lipid raft microdomains. Enzymatic activity of HAS was required for the growth of the microvilli, which were not present in cells transfected with other GFP proteins or inactive GFP-Has3 mutants or in cells incubated with exogenous soluble hyaluronan. The microvilli induced by HAS3 were gradually withered by introduction of an inhibitor of hyaluronan synthesis and rapidly retracted by hyaluronidase digestion, whereas they were not affected by competition with hyaluronan oligosaccharides and disruption of the CD44 gene, suggesting independence of hyaluronan receptors. The data bring out the novel concept that the glycocalyx created by dense arrays of hyaluronan chains, tethered to HAS during biosynthesis, can induce and maintain prominent microvilli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.