Abstract

Ocular neovascularization is a hallmark of several sight-threatening diseases, including diabetic retinopathy and age-related macular degeneration. Currently, available treatments are limited and often associated with side effects. Therefore, a novel approach to ocular neovascularization treatment through utilization of polymersomes from self-assembled sphingosine-grafted hyaluronic acid (HA-Sph) amphiphilic polymers is presented. The polymersomes are generated in spherical morphologies and sizes between 97.95- 161.9nm with homogenous size distributions. Experiments reveal that HA-Sph polymersomes, with concentrations ≥150µg mL-1, significantly inhibit the proliferation of human umbilical vein endothelial cells (HUVECs), while concurrently promoting the proliferation of retinal pigment epithelial cells. The polymersomes demonstrate gradual disintegration in vitro, leading to sustained release of sphingosine, which prolongs the inhibition of HUVEC proliferation (from 87.5% at 24h to 35.2% viability at 96h). The efficacy of polymersomes in inhibiting angiogenesis is confirmed through tube formation assay, revealing a substantial reduction in tube length compared to the control group. The findings also validate the ocular penetration capability of polymersomes through ex vivo whole porcine eye ocular penetration study, indicating their suitability for topical administration. Potentially, HA-Sph polymersomes can be harnessed to develop intricate drug delivery systems that protect the retina and effectively treat ocular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call