Abstract

Hyaluronic acid (HA) is increasingly investigated for biomedical applications such as regenerative medicine, aesthetic medicine, and drug delivery. Accordingly, conjugation of HA to PEGylated MNPs could increase the active targeting ability of nano-drug carriers toward CD44 receptors and be useful in a clinical setting such as drug delivery. So, we chemically conjugated mitoxantrone (MTX) to HA-PEGylated MNPs to use concurrent advantages such as prolong the circulation time, decrease the side effects and delivery toward special tumor cells. Size of the Fe3O4-DPA-PEG-HA-MTX NPs was determined ∼200 nm utilizing FESEM and DLS. Stability analysis confirmed that prepared MNPs were stable in physiological conditions even after 8 days and only 47.3% of MTX was liberated from nanocarriers, in the event that, acidic condition and also presence of protease enzyme accelerated the amount of MTX release to 100% after 8 days of incubation. The in vitro cytotoxicity analysis by MTT assay revealed that viable cell numbers were reduced by 32% when MTX-HA-MNPs were applied against MDA-MB-231 cell lines, while they showed significant decreased cellular cytotoxic effects on cell viability in the MCF-7 cell lines which express lower levels of CD44 receptor at the cell surface. Also, results of flow cytometry analysis following 24 h exposure confirmed that MTX-HA-MNPs have significant induction of apoptosis in MDA-MB-231 cell lines (70.3%) which contains high levels of CD44 expression, whereas there was little effect on the induction of apoptosis in MCF-7 cell lines (5%). The obtained binding models through molecular docking simulation related to each single moieties of prepared MNPs clearly confirmed that MTX-HA-MNPs can easily be bonded to the CD44 receptor with more affinity value in comparison to HA ligand, and so conjugation of HA to MNPs can be a good way for MTX delivery toward special tumor cells or tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.