Abstract

Hyaluronan (HA) plays crucial roles in the maintenance of high-quality cartilage extracellular matrix. Several studies have reported the HA in synovial fluid in patients with osteoarthritis (OA), but few have described the changes of HA in articular cartilage of OA or idiopathic osteonecrosis of the femoral head (ONFH). KIAA1199 was recently reported to have strong hyaluronidase activity. The aim of this study was to clarify the HA metabolism in OA and ONFH, particularly the involvement of KIAA1199. Immunohistochemical analysis of KIAA1199 and HA deposition was performed for human OA (n = 10), ONFH (n = 10), and control cartilage (n = 7). The concentration and molecular weight (MW) of HA were determined by competitive HA ELISA and Chromatography, respectively. Regarding HA metabolism-related molecules, HAS1, HAS2, HAS3, HYAL1, HYAL2, and KIAA1199 gene expression was assessed by reverse transcriptase polymerase chain reaction. Histological analysis showed the overexpression of KIAA1199 in OA cartilage, which was accompanied by decreased hyaluronic acid binding protein (HABP) staining compared with ONFH and control. Little KIAA1199 expression was observed in cartilage at the collapsed area of ONFH, which was accompanied by a slight decrease in HABPstaining. The messenger RNA (​​​​​mRNA) expression of HAS2 and KIAA1199 was upregulated in OA cartilage, while the mRNA expression of genes related to HA catabolism in ONFH cartilage showed mostly a downward trend. The MWof HA in OA cartilage increased while that in ONFH cartilage decreased. HA metabolism in ONFH is suggested to be generally indolent, and is activated in OA including high expression of KIAA1199. Interestingly, MW of HA in OA cartilage was not reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.