Abstract

Human stem cell-derived organoids enable both disease modeling and serve as a source of cells for transplantation. Human retinal organoids are particularly important as a source of human photoreceptors; however, the long differentiation period required and lack of vascularization in the organoid often results in a necrotic core and death of inner retinal cells before photoreceptors are fully mature. Manipulating the in vitro environment of differentiating retinal organoids through the incorporation of extracellular matrix components could influence retinal development. We investigated the addition of hyaluronan (HA), a component of the interphotoreceptor matrix, as an additive to promote long-term organoid survival and enhance retinal maturation. HA treatment had a significant reduction in the proportion of proliferating (Ki67+) cells and increase in the proportion of photoreceptors (CRX+), suggesting that HA accelerated photoreceptor commitment in vitro. HA significantly upregulated genes specific to photoreceptor maturation and outer segment development. Interestingly, prolonged HA-treatment significantly decreased the length of the brush border layer compared to those in control retinal organoids, where the photoreceptor outer segments reside; however, HA-treated organoids also had more mature outer segments with organized discs structures, as revealed by transmission electron microscopy. The brush border layer length was inversely proportional to the molar mass and viscosity of the hyaluronan added. This is the first study to investigate the role of exogenous HA, viscosity, and polymer molar mass on photoreceptor maturation, emphasizing the importance of material properties on organoid culture. Statement of SignificanceRetinal organoids are a powerful tool to study retinal development in vitro, though like many other organoid systems, can be highly variable. In this work, Shoichet and colleagues investigated the use of hyaluronan (HA), a native component of the interphotoreceptor matrix, to improve photoreceptor maturation in developing human retinal organoids. HA promoted human photoreceptor differentiation leading to mature outer segments with disc formation and more uniform and healthy retinal organoids. These findings highlight the importance of adding components native to the developing retina to generate more physiologically relevant photoreceptors for cell therapy and in vitro models to drive drug discovery and uncover novel disease mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.