Abstract

Allergic asthma is a chronic inflammatory disease of the airways characterized by excessive inflammation and remodeling of the extracellular matrix (ECM) and associated cells of the airway wall. Under inflammatory conditions, hyaluronan (HA), a major component of the ECM, undergoes dynamic changes, which may in turn affect the recruitment and activation of inflammatory cells leading to acute and chronic immunopathology of allergic asthma. In the present study, we measured the changes in HA levels generated at sites of inflammation, and examined its effect on inflammatory responses and collagen deposition in an Aspergillus fumigatus murine inhalational model of allergic asthma. We found that HA levels are elevated in allergic animals and that the increase correlated with the influx of inflammatory cells 5 days after the second allergen challenge. This increase in HA levels appeared largely due to upregulation of hyaluronidase-1 (HYAL1) and hyaluronidase-2 (HYAL2). Furthermore, HA co-localizes with areas of new collagen synthesis and deposition. Overall, our findings contribute to the growing literature that focuses on the components of ECM as inflammatory mediators rather than mere structural support products. The evidence of HA localization in fungal allergic asthma provides the impetus to study HA more closely with allergic leukocytes in murine models. Further studies examining HA's role in mediating cellular responses may help to develop targets for treatment in patients with severe asthma due to fungal sensitization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call