Abstract
High-molecular-weight hyaluronan acts as a ligand of the tumor-suppressive Hippo signal, whereas degradation of hyaluronan from a high-molecular-weight form to a low-molecular-weight forms by hyaluronidase 2 inhibits Hippo signal activation and thereby activates the pro-oncogenic transcriptional coactivator yes-associated protein (YAP), which creates a cancer-predisposing microenvironment and drives neoplastic transformation of cells through both cell-autonomous and non-cell-autonomous mechanisms. In fact, accumulation of low-molecular-weight hyaluronan in tissue stroma is observed in many types of cancers. Since inhibition of YAP activity suppresses tumor growth in vivo, pharmacological intervention of the Hippo-YAP signal is an attractive approach for future drug development. In this review, pharmacological intervention of excessive hyaluronan degradation as a novel approach for inhibition of the Hippo-YAP signal is also discussed. Development of hyaluronidase inhibitors may provide novel therapeutic strategies for human malignant tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.