Abstract

Although classical dendritic cells (DCs) arise from distinct progenitors in the bone marrow, the origin of inflammatory DCs and the distinction between monocyte-derived DCs and macrophages is less clear. In vitro culture of mouse bone marrow cells with GM-CSF is a well-established method to generate DCs, but GM-CSF has also been used to generate bone marrow-derived macrophages. In this article, we identify a distinct subpopulation of cells within the GM-CSF bone marrow-derived DC culture based on their ability to bind hyaluronan (HA), a major component of the extracellular matrix and ligand for CD44. HA identified a morphologically distinct subpopulation of cells within the immature DC population (CD11c(+) MHC II(mid/low)) that were CCR5(+)/CCR7(-) and proliferated in response to GM-CSF, but, unlike immature DCs, did not develop into mature DCs expressing CCR7 and high levels of MHC II, even after stimulation with LPS. The majority of these cells produced TNF-α in response to LPS but were unable to activate naive T cells, whereas the majority of mature DCs produced IL-12 and activated naive T cells. This HA binding population shared many characteristics with alveolar macrophages and was retained in the alveolar space after lung instillation even after LPS stimulation, whereas the MHC II(high) mature DCs were found in the draining lymph node. Thus, HA binding in combination with MHC II expression can be used to identify alveolar-like macrophages from GM-CSF-treated bone marrow cultures, which provides a useful in vitro model to study alveolar macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call