Abstract

A popular smoothing technique commonly used in time series analysis is double exponential smoothing. Basically, it’s an improvement of simple exponential smoothing which does the exponential filter process twice. Many researchers had developed the technique, hence Brown’s double exponential smoothing and Holt’s double exponential smoothing. Here, we introduce a new approach of double exponential smoothing, called H-WEMA, which combines the calculation of weighting factor in weighted moving average with Holt’s double exponential smoothing method. The proposed method will then be tested on Jakarta Stock Exchange (JKSE) composite index data. The accuracy and robustness level of the proposed method will then be examined by using mean square error and mean absolute percentage error criteria, and be compared to other conventional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.