Abstract

The continuously increasing demand for electric power and the economic access to remote renewable energy sources such as off-shore wind power or solar thermal generation in deserts have revived the interest in high-voltage direct current (HVDC) multiterminal systems (networks). A lot of work was done in this area, especially in the 1980s, but only two three-terminal systems were realized. Since then, HVDC technology has advanced considerably and, despite numerous technical challenges, the realization of large-scale HVDC networks is now seriously discussed and considered. For the acceptance and reliability of these networks, the availability of HVDC circuit breakers (CBs) will be critical, making them one of the key enabling technologies. Numerous ideas for HVDC breaker schemes have been published and patented, but no acceptable solution has been found to interrupt HVDC short-circuit currents. This paper aims to summarize the literature, especially that of the last two decades, on technology areas that are relevant to HVDC breakers. By comparing the mainly 20+ years old, state-of-the art HVDC CBs to the new HVDC technology, existing discrepancies become evident. Areas where additional research and development are needed are identified and proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.