Abstract

This paper presents a model-based optimization strategy for the condenser water loop of centralized heating, ventilation and air conditioning (HVAC) systems. Through analyzing each component characteristics and interactions within and between cooling towers and chillers, the optimization problem is formulated as that of minimizing the total operating cost of all energy consuming devices with mechanical limitations, component interactions, outdoor environment and indoor cooling load demands as constraints. A modified genetic algorithm for this particular problem is proposed to obtain the optimal set points of the process. Simulations and experimental results on a centralized HVAC pilot plant show that the operating cost of the condenser water loop can be substantially reduced compared with conventional operation strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.