Abstract

Subgridding methods are often used to increase the efficiency of the wave propagation simulation with the Finite-Difference Time-Domain method. However, the majority of contemporary subgridding techniques have two important drawbacks: the difficulty in accommodating dispersive media and the inability for physical interfaces to cross the subgridding interface. This paper presents an extension of the frequency-dependent Huygens subgridding method from one dimension to three dimensions. Frequency dependency is implemented via the Auxiliary Differential Equation approach using the one-pole Debye relaxation model. Numerical experiments indicate that subgridding interfaces can be placed in various Debye media as well as across the physical interface .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call