Abstract

Anomalous diffusion of random walks has been extensively studied for the case of non-interacting particles. Here we study the evolution of nonlinear partial differential equations by interpreting them as Fokker–Planck equations arising from interactions among random walkers. We extend the formalism of generalized Hurst exponents to the study of nonlinear evolution equations and apply it to several illustrative examples. They include an analytically solvable case of a nonlinear diffusion constant and three nonlinear equations which are not analytically solvable: the usual Fisher equation which contains a quadratic nonlinearity, a generalization of the Fisher equation with density-dependent diffusion constant, and the Nagumo equation which incorporates a cubic rather than a quadratic nonlinearity. We estimate the generalized Hurst exponents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.