Abstract

Abstract The relationship between minimum central surface pressure and the maximum sustained surface wind in tropical cyclones has been studied for many years, motivated by the fact that minimum pressure is generally easier to measure, but maximum wind is a much more relevant metric when considering tropical cyclone risk and potential impacts. It is well understood that tropical cyclone wind is closely related to the radial gradient of pressure through gradient or cyclostrophic balance assumptions, and not to a single point value of the minimum pressure near the storm center. But it is often the case that the maximum wind must be inferred from this single value. To accomplish this, a number of statistical relationships have been documented, such as those used in the Dvorak technique for estimating tropical cyclone intensity from satellite imagery. Here, the relationship between tropical cyclone maximum wind and minimum pressure is explored during eyewall replacement cycles (ERCs) that have been observed in North Atlantic hurricanes. It is shown that the wind–pressure relationship (WPR) can vary substantially during an ERC and generally moves away from the statistically fitted WPR used by the Dvorak technique in that basin. The changes in WPR during an ERC can be quite different depending on the intensity of the hurricane at the start of the ERC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call