Abstract

Abstract On 30 September 2021, a saildrone uncrewed surface vehicle (USV) was steered into category 4 Hurricane Sam, the most intense storm of the 2021 Atlantic hurricane season. It measured significant wave heights up to 14 m (maximum wave height = 27 m) and near-surface winds exceeding 55 m s−1. This was the first time in more than seven decades of hurricane observations that in real time a USV transmitted scientific data, images, and videos of the dynamic ocean surface near a hurricane’s eyewall. The saildrone was part of a five-saildrone deployment of the NOAA 2021 Atlantic Hurricane Observations Mission. These saildrones observed the atmospheric and oceanic near-surface conditions of five other tropical storms, of which two became hurricanes. Such observations inside tropical cyclones help to advance the understanding and prediction of hurricanes, with the ultimate goal of saving lives and protecting property. The 2021 deployment pioneered a new practice of coordinating measurements by saildrones, underwater gliders, and airborne dropsondes to make simultaneous and near-collocated observations of the air–sea interface, the ocean immediately below, and the atmosphere immediately above. This experimental deployment opened the door to a new era of using remotely piloted uncrewed systems to observe one of the most extreme phenomena on Earth in a way previously impossible. This article provides an overview of this saildrone hurricane observations mission, describes how the saildrones were coordinated with other observing platforms, presents preliminary scientific results from these observations to demonstrate their potential utility and motivate further data analysis, and offers a vision of future hurricane observations using combined uncrewed platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.