Abstract

Abstract Since the pioneering paper by Nastrom and Gage on aircraft-derived power spectra, significant progress has been made in understanding the wavenumber distribution of energy in Earth’s atmosphere and its implications for the intrinsic limits of weather forecasting. Improvements in tropical cyclone intensity predictions have lagged those of global weather forecasting, and limited intrinsic predictability may be partially responsible. In this study, we construct power spectra from aircraft data of over 1200 missions carried out by the National Oceanic and Atmospheric Administration (NOAA) and Air Force Reserve Command (AFRC) Hurricane Hunters. Each mission is parsed into distinct flight legs, and legs meeting a specified set of criteria are used for spectral analysis. Here, we produce power spectra composites for each category of the Saffir–Simpson scale, revealing a systematic relationship between spectral slope and storm intensity. Specifically, as storm intensity increases, we find that 1) spectral slope becomes steeper across scales from 10 to 160 km and 2) the transition zone where spectral slope begins to steepen shifts downscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call