Abstract
Remote sensing techniques have emerged as an essential tool for conducting damage assessments and are commonly used to improve disaster recovery planning and community resilience policies. The objective of this study was to use aerial imagery data and LiDAR to identify the hardest hit areas, quantify the extent of damages, and compare pre- and post-storm beach morphology conditions in Estero Island, Florida, relating to Hurricane Ian in 2022. This study identified >2400 structures that were impacted by Hurricane Ian, with 170 structures suffering extensive damage. Clustering of heavily damaged buildings was observed on the northern and central portions of the island, with lower levels of damage clustered on the southern part. Among the āseverely damagedā and ādestroyedā structures were seven mobile home subdivisions. The total assessed value of the heavily damaged structures was estimated at over USD 200 million. The results also indicated substantial post-storm debris and sand deposition across the entire island. Remote sensing provides advanced techniques that can help prioritize emergency response efforts after catastrophic impacts from a natural disaster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.