Abstract

This study analyzes storm-triggered landslides in the US Appalachians, in the current geological setting. Concave valleys that favor the convergence of surface runoff are the primary locales for landslides. If the slopes are weathered to the same degree and have the same vegetation coverage, slope orientation (azimuthal) is not critical for slope stability. However, it is found that for the region south of the Black Mountains (North Carolina), north-facing slopes are more prone to slide, because, for the regions not limited by water availability (annual precipitation), the northern slopes usually are grass slopes. For the slopes of the Blue Ridge Mountains, south facing slopes are more prone to slide. Gravity measurements over the past decade reveal that geological conditions, the chute system and underground cracks over the region are stable. Future changes in storm-triggered landslide frequency are primarily controlled by changes in extreme precipitation. Thus, a series of ensemble climate model experiments is carried out to investigate possible changes in future extreme precipitation events, using a weather model forced by atmospheric perturbations from ensemble climate models. Over 50 locations are identified as prone to future landslides. Many of these locales are natural habitats to the Appalachian salamanders. In a future warmer climate, more severe extreme precipitation events are projected because of increased atmospheric water vapor and more frequent passages of tropical cyclone remnants. There is also a likely shift of tropical cyclone tracks and associated extreme precipitations, and the cluster center of Appalachians’s scarps is expected to move westward, with ecological consequences for the endemic salamanders.

Highlights

  • The 5th assessment report of the Intergovernmental Panel on Climate Change (Chapter 7 in Working Group 1 Report of [1]) anticipated increased occurrence frequency of extreme events and the assertions seem agree with recent unfolds from Mother Nature: Last year (2014) several high-temperature records were broken in Europe, a spectacular heat wave struck Australia, and the California entered a fourth year of exceptional drought, while the memory of the destructive Hurricane Sandy (2012, the Atlantic basin) and Typhoon Haiyan (2013, the North West Pacific basin) still fresh

  • This study focuses on storm-triggered landslides/debris flows over the US Appalachians, a common form of natural hazards associated with extreme precipitation

  • The destruction wrought by the 1969 Hurricane Camille is such an example

Read more

Summary

Introduction

The 5th assessment report of the Intergovernmental Panel on Climate Change (Chapter 7 in Working Group 1 Report of [1]) anticipated increased occurrence frequency of extreme events and the assertions seem agree with recent unfolds from Mother Nature: Last year (2014) several high-temperature records were broken in Europe, a spectacular heat wave struck Australia, and the California entered a fourth year of exceptional drought, while the memory of the destructive Hurricane Sandy (2012, the Atlantic basin) and Typhoon Haiyan (2013, the North West Pacific basin) still fresh. It is suggested that another important contributor is increased exposure, due to the expanding of population into naturally unstable areas, thereby disturbing the primitive land cover and land use

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call