Abstract

Ostracoda or mussel-shrimps are small, bivalved Crustacea. Because of their excellent fossil record and their broad variety of reproductive modes, ostracods are of great interest as a model group in ecological and evolutionary research. Here, we investigated damage and repair from one of the most important biological mutagens, namely UVB radiation, in the putative ancient asexual ostracod Darwinula stevensoni from Belgium. We applied three different methods: the Polymerase Inhibition (PI) assay, Enzyme-Linked Immuno Sorbent Assay (ELISA) and dot blot. All three techniques were unsuccessful in quantifying UVB damage in D. stevensoni. Previous experiments have revealed that the valves of D. stevensoni provide an average UVB protection of approximate 60%. Thus, UVB damage could be too little to make quantitative experiments work. Additionally, variation between individual ostracods due to season and age most likely contributed further to the failure of the three used experimental approaches to quantify damage. In a second experiment, we investigated the influence of temperature on survival of D. stevensoni during UVB exposure. The estimated relative lethal UVB dose at 4°C was with 50 kJ/m2, significantly lower than at room temperature, with 130 kJ/m2. This could either indicate lack of adaptation to low temperatures and/or the presence of metabolic processes active at room temperature protecting against UVB damage in D. stevensoni. The latter possibility could also explain why the estimated relative lethal UVB dose of D. stevensoni is similar to that of other non-marine ostracods where valves provide around 80% protection, despite the valves of D. stevensoni providing less protection. If such metabolic processes can repair UVB damage quickly, this may provide an alternative explanation why we could not quantify UVB damage in D. stevensoni.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call