Abstract

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal cancers, in part, due to resistance to both conventional and targeted therapeutics. TRAIL directly induces apoptosis through engagement of cell surface Death Receptors (DR4 and DR5), and has been explored as a molecular target for cancer treatment. Clinical trials with recombinant TRAIL and DR-targeting agents, however, have failed to show overall positive outcomes. Herein, we identify a novel TRAIL resistance mechanism governed by Hu antigen R (HuR, ELAV1), a stress-response protein abundant and functional in PDA cells. Exogenous HuR overexpression in TRAIL-sensitive PDA cell lines increases TRAIL resistance whereas silencing HuR in TRAIL-resistant PDA cells, by siRNA oligo-transfection, decreases TRAIL resistance. PDA cell exposure to soluble TRAIL induces HuR translocation from the nucleus to the cytoplasm. Furthermore, it is demonstrated that HuR interacts with the 3'-untranslated region (UTR) of DR4 mRNA. Pre-treatment of PDA cells with MS-444 (Novartis), an established small molecule inhibitor of HuR, substantially increased DR4 and DR5 cell surface levels and enhanced TRAIL sensitivity, further validating HuR's role in affecting TRAIL apoptotic resistance. NanoString analyses on the transcriptome of TRAIL-exposed PDA cells identified global HuR-mediated increases in antiapoptotic processes. Taken together, these data extend HuR's role as a key regulator of TRAIL-induced apoptosis. Discovery of an important new HuR-mediated TRAIL resistance mechanism suggests that tumor-targeted HuR inhibition increases sensitivity to TRAIL-based therapeutics and supports their re-evaluation as an effective treatment for PDA patients. Mol Cancer Res; 14(7); 599-611. ©2016 AACR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.