Abstract

Objective To investigate the effects of HuR protein on the treatment of chronic lymphocytic leukemia (CLL). Methods LCL lymphoblast cells and B lymphocytes were subjected to HuR overexpression (OV) or interference (IV). Western blot was used to observe the protein expression of human tumor necrosis factor-associated factor 1 (TRAF1), human inhibitor of nuclear factor kappa-B kinase α (IKK-α), NF-κB-inducing kinase (NIK), and p52. Flow cytometry was performed to evaluate apoptosis, and the mRNA expression of TRAF1 was examined by quantitative reverse transcription polymerase chain reaction. Immunofluorescence was carried out to visualize the expression of HuR, and the relationship between HuR and TRAF1 was observed by pull-down test. Cell sensitivity to chlorambucil (CLB) and fludarabine (Flu) was assessed by Cell Counting Kit-8. Results The expression of HuR and TRAF1 in LCLs was significantly increased compared to that in B lymphocytes. Compared with the control, HuR OV significantly increased the expression of TRAF1 (P < 0.05), whereas it was significantly decreased in the IV group (P < 0.05). HuR can bind to TRAF1 directly, and the binding rate is positively correlated with HuR expression. After inhibiting HuR, the expression of TRAF1, IKK-α, NIK, p52, pro-Caspase 3, and PARP was significantly upregulated in LCLs and B lymphocytes (P < 0.05), while Caspase 3 was downregulated (P < 0.05). Compared with the control, the proliferation of LCLs and B lymphocytes treated by CLB and Flu decreased significantly after HuR blockade (P < 0.05). Conclusion HuR may be a key protein regulating CLL resistance. After inhibiting HuR, inflammatory response and apoptosis were significantly increased, and the cell sensitivity to CLB and Flu increased, suggesting that inhibiting HuR activity may be a potential strategy to solve the problem of drug resistance in CLL cells.

Highlights

  • Leukemia is a malignant clonal disease of hematopoietic stem cells, with fever, anemia, and lymphadenopathy as its main clinical symptoms

  • HuR is widely expressed in various tissues of the body and has three RNA recognition motif (RRM) domains

  • Kullmann et al found that HuR can negatively regulate target genes through specific mechanisms by inhibiting the translation of related mRNA [9]

Read more

Summary

Introduction

Leukemia is a malignant clonal disease of hematopoietic stem cells, with fever, anemia, and lymphadenopathy as its main clinical symptoms. Chronic lymphocytic leukemia (CLL) is a subtype of leukemia that originates from hematopoietic tissue. Tumor cells are monoclonal B lymphocytes with similar morphology to that of normal mature small lymphocytes and mainly exist in blood, bone marrow, and lymphoid tissue, with poor prognosis. The main treatment methods of CLL was chemotherapy. There is presently no ideal method of CLL treatment. HuR participates in the regulation of biological activities and is an important mediator of cell division, cell senescence, immune cell activation, and other vital activities closely related to inflammation and tumorigenesis [1, 2]. Danilin et al showed that HuR inhibited tumor cell apoptosis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call