Abstract

The problem of high utility sequence mining (HUSM) in quantitative se-quence databases (QSDBs) is more general than that of frequent sequence mining in se-quence databases. An important limitation of HUSM is that a user-predened minimum tility threshold is used commonly to decide if a sequence is high utility. However, this is not convincing in many real-life applications as sequences may have diferent importance. Another limitation of HUSM is that data in QSDBs are assumed to be precise. But in the real world, collected data such as by sensor maybe uncertain. Thus, this paper proposes a framework for mining high utility-probability sequences (HUPSs) in uncertain QSDBs (UQS-DBs) with multiple minimum utility thresholds using a minimum utility. Two new width and depth pruning strategies are also introduced to early eliminate low utility or low probability sequences as well as their extensions, and to reduce sets of candidate items for extensions during the mining process. Based on these strategies, a novel ecient algorithm named HUPSMT is designed for discovering HUPSs. Finally, an experimental study conducted in both real-life and synthetic UQSDBs shows the performance of HUPSMT in terms of time and memory consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.