Abstract

Mitochondrial dysfunction has been proved to contribute to ischemia-induced brain damage. In this study, which used a rat middle cerebral artery occlusion (MCAO) model, the protective effects of huperzine A (HupA) against mitochondrial dysfunction and brain damage were investigated. MCAO for 45 min followed by 4 hr of reperfusion significantly impaired the activities of mitochondrial respiratory chain enzymes (complex I, complex II-III, and complex IV) and alpha-ketoglutarate dehydrogenase, increased the production of reactive oxygen species (ROS), and induced mitochondrial swelling. Pretreatment of HupA at 0.1 mg/kg significantly preserved respiratory chain enzyme activities, decreased ROS production, and attenuated mitochondrial swelling. It could also significantly attenuate the neurological deficits (after 4 or 24 hr reperfusion) and reduce infarct volumes (after 24 hr reperfusion). Moreover, HupA protected isolated nonsynaptosomal mitochondria from calcium-induced damage in vitro by preserving mitochondrial membrane potential and decreasing ROS production. Overall, the present study indicates that HupA can ameliorate MCAO-induced mitochondrial dysfunction, and this might partially contribute to its protective effect on brain damage after 24 hr of reperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call