Abstract

To evaluate the effects of Huoxin Pill (, HXP) on cardiac fibrosis and heart failure (HF) in isoproterenol (ISO)-induced HF rats. Thirty Wistar rats were randomly divided into 5 groups including control, HF, isosorbide mononitrate (ISMN), HXP low (HXP-L), and HXP high (HXP-H) groups (n=6 for each group) according to the complete randomization method. Rats were pretreated with ISMN (5 mg/kg daily), low concentration of HXP (10 mg/kg daily) or high concentration of HXP (30 mg/kg daily) or equal volume of saline by intragastric administration for 1 week, followed by intraperitoneal injection of ISO (10 mg/kg, 14 days), and continually intragastric administrated with above medicines or saline for additional 6 weeks. The effects of HXP treatment on the cardiac function, heart weight index (HWI), pathological changes, and collagen content were further assessed. Moreover, the role of HXP on activation of transforming growth factor- β 1 (TGF-β 1)/Smads pathway was further explored using immunohistochemistry (IHC) and Western-blot assay. HXP treatment significantly alleviated the decrease of ejection fraction (EF) and fractional shortening (FS), while decreased the elevation of left ventricular end-systolic volume (LVESV) in ISO-induced HF rats (P<0.05). Moreover, HXP treatment obviously attenuated the increase of HWI and serum level of creatine kinase MB (CK-MB, P<0.05), as well as pathological changes in ISO-induced HF rats. Further determination indicated that HXP treatment alleviated the elevation of collagen I and collagen III protein expression in cardiac tissues of ISO-induced HF rats. Furthermore, HXP treatment significantly down-regulated the increase of TGF-β 1 and p-Smad2/3 protein expression in cardiac tissues of HF rats (P<0.05), while did not affect the expression of total Smad2/3. HXP attenuated heart failure and cardiac fibrosis in ISO-induced HF rats by suppression of TGF-β 1/Smad2/3 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.