Abstract

Huntingtin is a protein of unknown function that contains a polyglutamine tract, which is expanded in patients with Huntington's disease (HD). We investigated the localization and a potential function for huntingtin in the nucleus. In human fibroblasts from normal and HD patients, huntingtin localized diffusely in the nucleus and in subnuclear compartments identified as speckles, promyelocytic leukemia protein bodies, and nucleoli. Huntingtin-positive nuclear bodies redistributed after treatment with sodium butyrate. By Western blot, purified nuclei had low levels of full-length huntingtin compared with the cytoplasm but contained high levels of N- and C-terminal huntingtin fragments, which tightly bound the nuclear matrix. Full-length huntingtin co-immunoprecipitated with the transcriptional corepressor C-terminal binding protein, and polyglutamine expansion in huntingtin reduced this interaction. Full-length wild-type and mutant huntingtin repressed transcription when targeted to DNA. Truncated N-terminal mutant huntingtin repressed transcription, whereas the corresponding wild-type fragment did not repress transcription. We speculate that wild-type huntingtin may function in the nucleus in the assembly of nuclear matrix-bound protein complexes involved with transcriptional repression and RNA processing. Proteolysis of mutant huntingtin may alter nuclear functions by disrupting protein complexes and inappropriately repressing transcription in HD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.