Abstract

Ionic liquids (ILs) with large electrochemical potential windows (EPWs) are ideally suited to improve the energy and power density of electrical devices for energy storage. However, guidelines are scarcely available for the selection or systematic screening of ILs for practical applications. Here, we present theoretical predictions for the EPW of thousands of cation‐anion pairs based on a long‐range corrected hybrid density functional theory. The cathodic and anodic potential limits were estimated from the highest occupied molecular orbital and lowest unoccupied molecular orbital energies of individual cations and anions. The approximate method predicts EPWs in reasonable agreement with existing experimental data for several commonly used ionic systems and can be used as a screening tool for a large library of ILs. Five most stable anions, with the cathode stability in the order of B[CN]4 > PF6 > BF4 > BOB>NTf2, have been identified. These anions provide the largest EPWs when they are paired with conventional organic cations. The cation stability is reduced upon elongation of the alkyl chain length or branching of the molecular backbone. © 2018 American Institute of Chemical Engineers AIChE J, 65: 804–810, 2019

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call