Abstract

We consider the effect of Gaussian white noise on fast–slow dynamical systems with one fast and two slow variables, containing a folded node singularity. In the absence of noise, these systems are known to display mixed-mode oscillations, consisting of alternating large- and small-amplitude oscillations. We quantify the effect of noise and obtain critical noise intensities beyond which the small-amplitude oscillations become hidden by fluctuations. Furthermore we prove that the noise can cause sample paths to jump away from so-called canard solutions with high probability before deterministic orbits do. This early-jump mechanism can drastically influence the local and global dynamics of the system by changing the mixed-mode patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.