Abstract

A new approach to computation at affordable cost of accurate geometrical structures and rotational constants for medium-sized molecules in the gas phase is further improved and applied to a large panel of interstellar complex organic molecules. The most distinctive feature of the new model is the effective inclusion of core-valence correlation and vibrational averaging effects in the framework of density functional theory (DFT). In particular, a double-hybrid functional in conjunction with a quadruple-ζ valence/triple-ζ polarization basis set is employed for geometry optimizations, whereas a cheaper hybrid functional in conjunction with a split-valence basis set is used for the evaluation of vibrational corrections. A thorough benchmark based on a wide range of prototypical systems shows that the new scheme approaches the accuracy of state-of-the-art wave function methods with the computational cost of the standard methods (DFT or MP2) routinely employed in the interpretation of microwave spectra. Since the whole computational workflow involves the postprocessing of the output of standard electronic structure codes by a new freely available web utility, the way is paved for the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by nonspecialists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.