Abstract
Metagenomic studies have demonstrated that viruses are extremely diverse and abundant in insects, but the difficulty of isolating them means little is known about the biology of these newly discovered viruses. To overcome this challenge in Drosophila, we created a cell line that was more permissive to infection and detected novel viruses by the presence of double-stranded RNA. We demonstrate the utility of these tools by isolating La Jolla virus (LJV) and Newfield virus (NFV) from several wild Drosophila populations. These viruses have different potential host ranges, with distinct abilities to replicate in five Drosophila species. Similarly, in some species they cause high mortality and in others they are comparatively benign. In three species, NFV but not LJV caused large declines in female fecundity. This sterilization effect was associated with differences in tissue tropism, as NFV but not LJV was able to infect Drosophila melanogaster follicular epithelium and induce follicular degeneration in the ovary. We saw a similar effect in the invasive pest of fruit crops Drosophila suzukii, where oral infection with NFV caused reductions in the fecundity, suggesting it has potential as a biocontrol agent. In conclusion, a simple protocol allowed us to isolate new viruses and demonstrate that viruses identified by metagenomics have a large effect on the fitness of the model organism D. melanogaster and related species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.